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Critical IssueCritical Issue

n Poisson solvers used in quasistatic electric and
gravitational particle-in-cell simulations generally fail
when the grid aspect ratio >> 1

n Some important problems involve extreme aspect ratios:
l Long beams in rf accelerators: length ~1m; radius ~1mm

l Beams in induction linacs: length~ 10s of meters; radius ~ cm

l Galaxies

n Standard grid-based approaches involve using a very
large # of grid points in the long dimension, leading to
prohibitively long run times

n As a result, it is extremely difficult model high aspect ratio
systems accurately using standard grid-based
approaches



ObservationsObservations

n The Green function, G, and source density, r, may change
over vastly different scales

n G is known apriori; r is not

† 

f(x, y) = G(x - x ', y - y ')r(x ', y')dx 'dy 'Ú

We should use all the information available regarding G so that the
numerical solution is only limited by our approximate knowledge of r

n Example: 2D Poisson equation in free space



Standard ApproachStandard Approach
((Hockney Hockney and Eastwood)and Eastwood)

n This approach is equivalent to using the trapezoidal rule
(modulo treatment of boundary terms) to approximate the
convolution integral

n This approach makes use of only partial knowledge of G
n The error depends on how rapidly the integrand, rG, varies

over an elemental volume
l If r changes slowly we might try to use a large grid spacing; but this can

introduce huge errors due to the change in G over a grid length

† 

fi, j = Gi- i', j- j 'rÂ i', j'



Cellular Analytic Convolution (CAC)Cellular Analytic Convolution (CAC)

n Assume the charge density, r, varies in a prescribed way in each cell

n Use the analytic form of the Green function to perform the convolution
integral exactly in each cell, then sum over cells

n Example: linear basis functions to approximate r in a cell:

† 

f(xi,y j ) =
i', j'
Â ri, j dx '

0

hx

Ú dy'
0

hx

Ú (hx - x')(hy - y ')G(xi - xi' - x',y j - y j ' - y ') +

i', j'
Â ri+1, j dx '

0

hx

Ú dy' x '(hy - y')
0

hx

Ú G(xi - xi' - x',y j - y j ' - y ') +

i', j'
Â ri, j +1 dx '

0

hx

Ú dy'(hx - x ')y '
0

hx

Ú G(xi - xi' - x ',y j - y j ' - y ') +

i', j'
Â ri+1, j +1 dx '

0

hx

Ú dy'
0

hx

Ú x ' y 'G(xi - xi' - x ',y j - y j ' - y')

n Shifting the indices results in a single convolution
involving an integrated effective Green function:

† 

fi, j = Gi- i', j- j '
eff rÂ i', j'



Cost and Accuracy of CAC;Cost and Accuracy of CAC;
Improvement over Standard ApproachImprovement over Standard Approach

n Cost: Computing the elemental integrals can be done via
analytical formulae in 2D (and 3D?) or by num. quadrature

l Requires more FLOPS than simply using Gij but…

l In situations where the grid is fixed, this only needs to be done once at
the start of a run. Amortized over many time steps, this does not
significantly impact run time.

n Accuracy: Method works as long as the elemental integrals
are computed accurately and as long as the grid and # of
macroparticles are sufficient to resolve variation in r

n CAC maintains accuracy even for extreme aspect ratios
(>1000:1)

As a result, CAC performs orders of magnitude better than
the standard convolution algorithm for realistic problems
involving large aspect ratios



Example: Uniformly filled 2D ellipseExample: Uniformly filled 2D ellipse

n Aspect ratio is 1:1000  --  xmax=0.001, ymax=1

n Calculation of fields using (1) standard Hockney algorithm
and (2) new CAC approach

l In both cases, performed convolutions for the fields directly (rather than
calculating the potential and using finite differences to obtain fields)

n Calculation performed on a grid of size ±0.0015 x ± 1.5
using a mesh of size

l Hockney: 64x64, 64x128, 64x256,…, 64x16384

l CAC: 64x64



1:1000 test case; Ex vs. x:1:1000 test case; Ex vs. x:
Standard Standard Hockney Hockney Algorithm has huge errorsAlgorithm has huge errors
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Ex vs. x : Reduced Vertical ScaleEx vs. x : Reduced Vertical Scale
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New algorithm (CAC) provides better than 1% accuracy using 64x64 gridNew algorithm (CAC) provides better than 1% accuracy using 64x64 grid
((black curveblack curve). Old algorithm is worse everywhere on 64x2048 (). Old algorithm is worse everywhere on 64x2048 (purplepurple););
error > 10% at some locations on 64x4096 (error > 10% at some locations on 64x4096 (blueblue); requires 64x16384 to); requires 64x16384 to

achieve < 1% everywhere (achieve < 1% everywhere (redred).).
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Bottom LineBottom Line

n For this test problem, the standard Hockney algorithm
would require ~500 times more computational effort to
achieve the same worst-case accuracy as a simulation
using the new ACE approach.

n CAC works whether the aspect ratio is large, small, or
near unity, i.e. it is generally applicable.

n Verified in 2D; we expect the same to hold for 3D



Extension to Beams in PipesExtension to Beams in Pipes

n CAC provides a crucial advantage, since the Green function falls off
exponentially in z, though r(z)may change slowly over meters

n Due to shielding, sum can be truncated in the “long” direction:

† 

fi, j =
i'=1

Nx

Â Gi- i', j- j '
eff ri', j '

j '= j

j ± jcutoff

Â
n For long beam in a conducting pipe, if grid length in z is >> pipe radius,

can truncate at nearest neighbors:

† 

fi, j = (Gi- i', j-1
eff ri', j-1

i'=1

Nx

Â + Gi- i', j
eff ri', j + Gi- i', j +1

eff ri', j +1)

n For a rectangular pipe, can rewrite Green function as a sum of
convolutions and correlations; then can still use FFT-based approach
to sum over elements


